
Loop Processing
A processing loop is a group of statements which are executed repeatedly until a stated condition has been satisfied,
or as long as a certain condition prevails.

The following topics are covered:

Use of Processing Loops
Limiting Database Loops
Limiting Non-Database Loops - REPEAT Statement
Example of REPEAT Statement
Terminating a Processing Loop - ESCAPE Statement
Loops within Loops
Example of Nested FIND Statements
Referencing Statements within a Program
Example of Referencing with Line Numbers
Example with Statement Reference Labels

Use of Processing Loops
Processing loops can be subdivided into database loops and non-database loops:

Database processing loops
are those created automatically by Natural to process data selected from a database as a result of a READ, FIND
or HISTOGRAM statement.
These statements are described in the section Database Access.
Non-database processing loops
are initiated by the statements REPEAT, FOR, CALL FILE, CALL LOOP, SORT, and READ WORK FILE.

More than one processing loop may be active at the same time. Loops may be embedded or nested within other loops
which remain active (open).

A processing loop must be explicitly closed with a corresponding END-... statement (for example, END-REPEAT,
END-FOR, etc.)

The SORT statement, which invokes the sort program of the operating system, closes all active processing loops and
initiates a new processing loop.

Limiting Database Loops
Possible Ways of Limiting Database Loops
LT Session Parameter
LIMIT Statement
Limit Notation
Priority of Limit Settings

Possible Ways of Limiting Database Loops

With the statements READ, FIND or HISTOGRAM, you have three ways of limiting the number of repetitions of
the processing loops initiated with these statements:

1Copyright Software AG 2003

Loop ProcessingLoop Processing

using the session parameter LT,
using a LIMIT statement,
or using a limit notation in a READ/FIND/HISTOGRAM statement itself.

LT Session Parameter

With the system command GLOBALS, you can specify the session parameter LT, which limits the number of
records which may be read in a database processing loop.

Example:

GLOBALS LT=100

This limit applies to all READ, FIND and HISTOGRAM statements in the entire session.

LIMIT Statement

In a program, you can use the LIMIT statement to limit the number of records which may be read in a database
processing loop.

Example:

LIMIT 100

The LIMIT statement applies to the remainder of the program unless it is overridden by another LIMIT statement or
limit notation.

Limit Notation

With a READ, FIND or HISTOGRAM statement itself, you can specify the number of records to be read in
parentheses immediately after the statement name.

Example:

READ (10) VIEWXYZ BY NAME

This limit notation overrides any other limit in effect, but applies only to the statement in which it is specified.

Priority of Limit Settings

If the limit set with the LT parameter is smaller than a limit specified with a LIMIT statement or a limit notation, the
LT limit has priority over any of these other limits.

Limiting Non-Database Loops - REPEAT Statement
Non-database processing loops begin and end based on logical condition criteria or some other specified limiting
condition.

The REPEAT statement is discussed here as representative of a non-database loop statement.

With the REPEAT statement, you specify one or more statements which are to be executed repeatedly. Moreover,
you can specify a logical condition, so that the statements are only executed either until or as long as that condition is
met. For this purpose you use an UNTIL or WHILE clause.

Copyright Software AG 20032

Loop ProcessingLimiting Non-Database Loops - REPEAT Statement

If you specify the logical condition

in an UNTIL clause, the REPEAT loop will continue until the logical condition is met;
in a WHILE clause, the REPEAT loop will continue as long as the logical condition remains true.

If you specify no logical condition, the REPEAT loop must be exited with one of the following statements:

ESCAPE
terminates the execution of the processing loop and continues processing outside the loop (see below).
STOP
stops the execution of the entire Natural application.
TERMINATE
stops the execution of the Natural application and also ends the Natural session.

Example of REPEAT Statement
 ** Example Program ’REPEAX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 SALARY (1:1)
 1 #PAY1 (N8)
 END-DEFINE
 *
 READ (5) MYVIEW BY NAME WHERE SALARY (1) = 30000 THRU 39999
 MOVE SALARY (1) TO #PAY1
 REPEAT WHILE #PAY1 LT 40000
 MULTIPLY #PAY1 BY 1.1
 DISPLAY NAME (IS=ON) SALARY (1)(IS=ON) #PAY1
 END-REPEAT
 SKIP 1
 END-READ
 END

The above program produces the following output:

 Page 1 97-08-19 18:42:53

 NAME ANNUAL #PAY1
 SALARY
 -------------------- ---------- ---------

 ADKINSON 34500 37950
 41745

 33500 36850
 40535

 36000 39600
 43560

 AFANASSIEV 37000 40700

 ALEXANDER 34500 37950
 41745

3Copyright Software AG 2003

Example of REPEAT StatementLoop Processing

Terminating a Processing Loop - ESCAPE Statement
The ESCAPE statement is used to terminate the execution of a processing loop based on a logical condition.

You can place an ESCAPE statement within loops in conditional IF statement groups, in break processing statement
groups (AT END OF DATA, AT END OF PAGE, AT BREAK), or as a stand-alone statement implementing the
basic logical conditions of a non-database loop.

The ESCAPE statement offers the options TOP and BOTTOM, which determine where processing is to continue
after the processing loop has been left via the ESCAPE statement:

ESCAPE TOP is used to continue processing at the top of the processing loop.
ESCAPE BOTTOM is used to continue processing with the first statement following the processing loop.

You can specify several ESCAPE statements within the same processing loop.

For further details and examples of the ESCAPE statement, see the Natural Statements documentation.

Loops Within Loops
A database statement can be placed within a database processing loop initiated by another database statement. When
database loop-initiating statements are embedded in this way, a "hierarchy" of loops is created, each of which is
processed for each record which meets the selection criteria.

Multiple levels of loops can be embedded. For example, non-database loops can be nested one inside the other.
Database loops can be nested inside non-database loops. Database and non-database loops can be nested within
conditional statement groups.

Example of Nested FIND Statements
The following program illustrates a hierarchy of two loops, with one FIND loop nested or embedded within another
FIND loop.

 ** Example Program ’FINDX06’
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 NAME
 2 PERSONNEL-ID
 1 VEH-VIEW VIEW OF VEHICLES
 2 MAKE
 2 PERSONNEL-ID
 END-DEFINE
 *
 FND1. FIND EMPLOY-VIEW WITH CITY = ’NEW YORK’ OR = ’BEVERLEY HILLS’
 FIND (1) VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (FND1.)
 DISPLAY NOTITLE NAME CITY MAKE
 END-FIND
 END-FIND
 END

The above program selects data from multiple files. The outer FIND loop selects from the EMPLOYEES file all
persons who live in New York or Beverley Hills. For each record selected in the outer loop, the inner FIND loop is
entered, selecting the car data of those persons from the VEHICLES file. The program produces the following
output:

Copyright Software AG 20034

Loop ProcessingTerminating a Processing Loop - ESCAPE Statement

 NAME CITY MAKE
 -------------------- -------------------- --------------------

 RUBIN NEW YORK FORD
 OLLE BEVERLEY HILLS GENERAL MOTORS
 ADKINSON BEVERLEY HILLS FORD
 WALLACE NEW YORK MAZDA
 SPEISER BEVERLEY HILLS FORD

Referencing Statements within a Program
Statement reference notation is used to refer to previous statements in a program in order to specify processing over
a particular range of data, to override Natural’s default referencing (as described for each statement in the Natural
Statements documentation, where applicable), or for documentation purposes.

Any Natural statement which causes a processing loop to be initiated and/or causes data elements in a database to be
accessed. For example, the following statements can be referenced:

READ
FIND
HISTOGRAM
SORT
REPEAT
FOR

When multiple processing loops are used in a program, reference notation is used to uniquely identify the particular
database field to be processed by referring back to the statement that originally accessed that field in the database. (If
a field can be referenced in such a way, this is indicated in the "Reference Permitted" column of the "Operand
Definition Table" in the statement description in the Natural Statements documentation.)

In addition, reference notation can be specified in some statements. For example:

AT START OF DATA
AT END OF DATA
AT BREAK
ESCAPE BOTTOM

Without reference notation, an AT START OF DATA, AT END OF DATA or AT BREAK statement will be related
to the outermost active READ, FIND, HISTOGRAM, SORT or READ WORK FILE loop. With reference notation,
you can relate it to another active processing loop.

If reference notation is specified with an ESCAPE BOTTOM statement, processing will continue with the first
statement following the processing loop identified by the reference notation.

Statement reference notation may be specified in the form of a statement label or a source-code line number.

A statement label consists of several characters, the last of which must be a period (.). The period serves to identify
the entry as a label.

A statement that is to be referenced is marked with a label by placing the label at the beginning of the line that
contains the statement. For example:

5Copyright Software AG 2003

Referencing Statements within a ProgramLoop Processing

 0030 ...
 0040 READ1. READ VIEWXYZ BY NAME
 0050 ...

In the statement that references the marked statement, the label is placed in parentheses at the location indicated in
the statement’s syntax diagram (as described in the Natural Statements documentation). For example:

 AT BREAK (READ1.) OF NAME

If source-code line number are used for referencing, they must be specified as 4-digit numbers (leading zeros must
not be omitted) and in parentheses. For example:

 AT BREAK (0040) OF NAME

In a statement where the label/line number relates a particular field to a previous statement, the label/line number is
placed in parentheses after the field name. For example:

 DISPLAY NAME (READ1.) JOB-TITLE (READ1.) MAKE MODEL

Line numbers and labels can be used interchangeably.

Example of Referencing with Line Numbers
The following program uses line numbers for referencing.

In this particular example, the line numbers refer to the statements that would be referenced in any case by default.

 0010 ** Example Program ’LABELX01’
 0020 DEFINE DATA LOCAL
 0030 1 MYVIEW1 VIEW OF EMPLOYEES
 0040 2 NAME
 0050 2 FIRST-NAME
 0060 2 PERSONNEL-ID
 0070 1 MYVIEW2 VIEW OF VEHICLES
 0080 2 PERSONNEL-ID
 0090 2 MAKE
 0100 END-DEFINE
 0110 *
 0120 LIMIT 15
 0130 READ MYVIEW1 BY NAME STARTING FROM ’JONES’
 0140 FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (0130)
 0150 IF NO RECORDS FOUND
 0160 MOVE ’***NO CAR***’ TO MAKE
 0170 END-NOREC
 0180 DISPLAY NOTITLE NAME (0130) (IS=ON) FIRST-NAME (0130) (IS=ON)
 0190 MAKE (0140)
 0200 END-FIND /* (0140)
 0210 END-READ /* (0130)
 0220 END

Example with Statement Reference Labels
The following example illustrates the use of statement reference labels.

It is identical to the previous program, except that labels are used for referencing instead of line numbers.

Copyright Software AG 20036

Loop ProcessingExample of Referencing with Line Numbers

 0010 ** Example Program ’LABELX02’
 0020 DEFINE DATA LOCAL
 0030 1 MYVIEW1 VIEW OF EMPLOYEES
 0040 2 NAME
 0050 2 FIRST-NAME
 0060 2 PERSONNEL-ID
 0070 1 MYVIEW2 VIEW OF VEHICLES
 0080 2 PERSONNEL-ID
 0090 2 MAKE
 0100 END-DEFINE
 0110 *
 0120 LIMIT 15
 0130 RD. READ MYVIEW1 BY NAME STARTING FROM ’JONES’
 0140 FD. FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (FD.)
 0150 IF NO RECORDS FOUND
 0160 MOVE ’***NO CAR***’ TO MAKE
 0170 END-NOREC
 0180 DISPLAY NOTITLE NAME (RD.) (IS=ON) FIRST-NAME (RD.) (IS=ON)
 0190 MAKE (FD.)
 0200 END-FIND /* (FD.)
 0210 END-READ /* (RD.)
 0220 END

Both programs produce the following output:

 NAME FIRST-NAME MAKE
 -------------------- -------------------- --------------------

 JONES VIRGINIA ***NO CAR***
 MARSHA CHRYSLER
 CHRYSLER
 ROBERT GENERAL MOTORS
 LILLY ***NO CAR***
 EDWARD GENERAL MOTORS
 MARTHA ***NO CAR***
 LAUREL GENERAL MOTORS
 KEVIN DATSUN
 GREGORY FORD
 JOPER MANFRED ***NO CAR***
 JOUSSELIN DANIEL RENAULT
 JUBE GABRIEL ***NO CAR***
 JUNG ERNST ***NO CAR***
 JUNKIN JEREMY ***NO CAR***
 KAISER REINER ***NO CAR***

7Copyright Software AG 2003

Example with Statement Reference LabelsLoop Processing

	Loop Processing
	Use of Processing Loops
	Limiting Database Loops
	Possible Ways of Limiting Database Loops
	LT Session Parameter
	LIMIT Statement
	Limit Notation
	Priority of Limit Settings

	Limiting Non-Database Loops - REPEAT Statement
	Example of REPEAT Statement
	Terminating a Processing Loop - ESCAPE Statement
	Loops Within Loops
	Example of Nested FIND Statements
	Referencing Statements within a Program
	Example of Referencing with Line Numbers
	Example with Statement Reference Labels

